Mining Rare Association Rules from e-Learning Data
نویسندگان
چکیده
Rare association rules are those that only appear infrequently even though they are highly associated with very specific data. In consequence, these rules can be very appropriate for using with educational datasets since they are usually imbalanced. In this paper, we explore the extraction of rare association rules when gathering student usage data from a Moodle system. This type of rule is more difficult to find when applying traditional data mining algorithms. Thus we show some relevant results obtained when comparing several frequent and rare association rule mining algorithms. We also offer some illustrative examples of the rules discovered in order to demonstrate both their performance and their usefulness in educational environments.
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملEfficient Rare Association Rule Mining Algorithm
Data mining is the process of discovering correlations, patterns, trends or relationships by searching through a large amount of data stored in repositories, corporate databases, and data warehouses. In Data mining field, the primary task is to mine frequent item sets from a transaction database using Association Rule Mining (ARM).Whereas the extraction of frequent patterns has focused the majo...
متن کاملUsing a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کاملRare Association Rule Mining via Transaction Clustering
Rare association rule mining has received a great deal of attention in the recent past. In this research, we use transaction clustering as a pre-processing mechanism to generate rare association rules. The basic concept underlying transaction clustering stems from the concept of large items as defined by traditional association rule mining algorithms. We make use of an approach proposed by Koh ...
متن کاملMSApriori using Total Support Tree Data Structure
Association rule mining is one of the important problems of data mining. Single minimum support based approaches of association rule mining suffers from "rare item problem". An improved approach MSApriori uses multiple supports to generate association rules that consider rare item sets. Necessity to first identify the "large" set of items contained in the input dataset to ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010